Kinetics of Particles "Newton's Second Law"

2-1 NEWTON'S SECOND LAW OF MOTION

If the resultant force acting on a particle is not zero, the particle will have acceleration proportional to the magnitude of the resultant and in the direction of this resultant force

$$
\begin{aligned}
& \frac{F_{1}}{a_{1}}=\frac{F_{2}}{a_{2}}=\frac{F_{3}}{a_{3}}=\cdots=\text { constant } \quad \mathbf{F}=m \mathbf{a} \\
& \Sigma \mathbf{F}=m \mathbf{a}
\end{aligned}
$$

2-2 SYSTEMS OF UNITS

A-International System of Units (SI Units)

$$
1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

$$
W=(1 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=9.81 \mathrm{~N}
$$

$$
\begin{aligned}
1 \mathrm{~km}= & 1000 \mathrm{~m} \quad 1 \mathrm{~mm}= \\
1 \mathrm{Mg}= & 1000.001 \mathrm{mg} \\
& 1 \mathrm{kN}=1000 \mathrm{~N}
\end{aligned}
$$

B- U.S. Customary Units

$$
F=m a \quad 1 \mathrm{lb}=(1 \mathrm{slug})\left(1 \mathrm{ft} / \mathrm{s}^{2}\right)
$$

$$
1 \mathrm{slug}=\frac{1 \mathrm{lb}}{1 \mathrm{ft} / \mathrm{s}^{2}}=1 \mathrm{lb} \cdot \mathrm{~s}^{2} / \mathrm{ft}
$$

Fig. 12.6

C- Conversion from One System of Units to Another

```
Length:
    l ft = 0.3048 m
Force:
    l lb = 4.448 N
Mass:
    1 slug = 1 lb }\cdot\mp@subsup{\textrm{s}}{}{2}/\textrm{ft}=14.59\textrm{kg
```

 1 pound-mass \(=0.4536 \mathrm{~kg}\)

2-3 EQUATIONS OF MOTION

A- Rectangular Components

Resolving each force F and the acceleration a into rectangular components, we write

$$
\begin{aligned}
& \qquad \Sigma\left(F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}\right)=m\left(a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}\right) \\
& \text { from which it follows that } \\
& \Sigma F_{x}=m a_{x} \quad \Sigma F_{y}=m a_{y} \quad \Sigma F_{z}=m a_{z} \\
& \Sigma F_{x}=m \ddot{x} \quad \Sigma F_{y}=m \ddot{y} \quad \Sigma F_{z}=m \ddot{z}
\end{aligned}
$$

B- Tangential and Normal Components

Substituting for a_{t} and a_{n} from Eqs. (11.40), we have

$$
\Sigma F_{t}=m \frac{d v}{d t} \quad \Sigma F_{n}=m \frac{v^{2}}{\rho}
$$

Example -1: A 200-lb block rests on a horizontal plane. Find the magnitude of the force \mathbf{P} required to give the block an acceleration of $10 \mathrm{ft} / \mathrm{s} 2$ to the right. The coefficient of kinetic friction between the block and the plane is $\mu_{k}=0.25$.

The mass of the block is

$$
m=\frac{W}{g}=\frac{200 \mathrm{lb}}{32.2 \mathrm{ft} / \mathrm{s}^{2}}=6.21 \mathrm{lb} \cdot \mathrm{~s}^{2} / \mathrm{ft}
$$

We note that $F=\mu_{k} N=0.25 \mathrm{~N}$ and that $a=10 \mathrm{ft} / \mathrm{s}^{2}$. Expressing that the forces acting on the block are equivalent to the vector ma, we write

$$
\begin{array}{ll}
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=m a: & P \cos 30^{\circ}-0.25 N=\left(6.21 \mathrm{lb} \cdot \mathrm{~s}^{2} / \mathrm{ft}\right)\left(10 \mathrm{ft} / \mathrm{s}^{2}\right) \\
+\uparrow \Sigma F_{y}=0: & P \cos 30^{\circ}-0.25 \mathrm{~N}=62.1 \mathrm{lb} \tag{1}\\
& N-P \sin 30^{\circ}-200 \mathrm{lb}=0
\end{array}
$$

Solving (2) for N and substituting the result into (1), we obtain

$$
\begin{gathered}
N=P \sin 30^{\circ}+200 \mathrm{lb} \\
P \cos 30^{\circ}-0.25\left(P \sin 30^{\circ}+200 \mathrm{lb}\right)=62.1 \mathrm{lb} \quad P=151 \mathrm{lb}
\end{gathered}
$$

Example -2: The two blocks shown start from rest. The horizontal plane and the pulley are frictionless, and the pulley is assumed to be of negligible mass. Determine the acceleration of each block and the tension in each cord.

Block A. Denoting by T_{1} the tension in cord $A C D$, we write

$$
\xrightarrow{+} \Sigma F_{x}=m_{A} a_{A}: \quad T_{1}=100 a_{A}
$$

Block B. Observing that the weight of block B is

$$
W_{B}=m_{B G} g=(300 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2940 \mathrm{~N}
$$

and denoting by T_{2} the tension in cord $B C$, we write

$$
+\downarrow \Sigma F_{y}=m_{B} a_{B}: \quad 2940-T_{2}=300 a_{B}
$$

or, substituting for a_{B} from (1),

$$
\begin{gathered}
2940-T_{2}=300\left(\frac{1}{2} a_{A}\right) \\
T_{2}=2940-150 a_{A}
\end{gathered}
$$

Pulley C. Since m_{C} is assumed to be zero, we have

$$
\begin{equation*}
+\downarrow \Sigma F_{y}=m_{C} a_{C}=0: \quad T_{2}-2 T_{1}=0 \tag{4}
\end{equation*}
$$

Substituting for T_{1} and T_{2} from (2) and (3), respectively, into (4) we write

$$
\begin{aligned}
& 2940-150 a_{\text {A }}-2\left(100 a_{\text {A }}\right)=0 \\
& 2940-350 a_{\text {A }}=0 \quad a_{\text {A }}=8.40 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Substituting the value obtained for a_{A} into (1) and (2), we have

$$
\begin{array}{lr}
a_{B}=\frac{1}{2} a_{A}=\frac{1}{2}\left(8.40 \mathrm{~m} / \mathrm{s}^{2}\right) & a_{B}=4.20 \mathrm{~m} / \mathrm{s}^{2} \\
T_{1}=100 a_{A}=(100 \mathrm{~kg})\left(8.40 \mathrm{~m} / \mathrm{s}^{2}\right) & T_{1}=840 \mathrm{~N}
\end{array}
$$

Recalling (4), we write

$$
T_{2}=2 T_{1} \quad T_{2}=2(840 \mathrm{~N}) \quad T_{2}=1680 \mathrm{~N}
$$

We note that the value obtained for T_{2} is not equal to the weight of block B.

Example -3: The bob of a 2-m pendulum describes an arc of circle in a vertical plane. If the tension in the cord is 2.5 times the weight of the bob for the position shown, find the velocity and the acceleration of the bob in that position.

The weight of the bob is $W=m g$; the tension in the cord is thus 2.5 mg . Recalling that \mathbf{a}_{n} is directed toward O and assuming \mathbf{a}_{t} as shown, we apply Newton's second law and obtain

$$
\begin{aligned}
& +\angle \Sigma F_{t}=m a_{t}: \\
& \begin{array}{c}
m g \sin 30^{\circ}=m a_{t} \\
a_{t}=g \sin 30^{\circ}=+4.90 \mathrm{~m} / \mathrm{s}^{2}
\end{array} \\
& \mathrm{a}_{t}=4.90 \mathrm{~m} / \mathrm{s}^{2} \swarrow \\
& +\Sigma \Sigma F_{n}=m a_{n}: \\
& 2.5 m g-m g \cos 30^{\circ}=m a_{n} \\
& a_{n}=1.634 \mathrm{~g}=+16.03 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{a}_{n}=16.03 \mathrm{~m} / \mathrm{s}^{2} \pi
\end{aligned}
$$

Since $a_{n}=v^{2} / \rho$, we have $v^{2}=\rho a_{n}=(2 \mathrm{~m})\left(16.03 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
v= \pm 5.66 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}=5.66 \mathrm{~m} / \mathrm{s} \swarrow \text { (up or down })
$$

Example -4: Determine the rated speed of a highway curve of radius $\rho=400 \mathrm{ft}$ banked through an angle $\varphi=18^{\circ}$. The rated speed of a banked highway curve is the speed at which a car should travel if no lateral friction force is to be exerted on its wheels.

$$
\begin{array}{lc}
+\uparrow \Sigma F_{y}=0: & R \cos \theta-W=0 \\
\pm \Sigma F_{n}=m a_{n}: & R \sin \theta=\frac{W}{g} a_{n} \tag{2}
\end{array}
$$

Substituting for R from (1) into (2), and recalling that $a_{n}=v^{2} / \rho$,

$$
\frac{W}{\cos \theta} \sin \theta=\frac{W}{g} \frac{v^{2}}{\rho} \quad v^{2}=g \rho \tan \theta
$$

Substituting $\rho=400 \mathrm{ft}$ and $\theta=18^{\circ}$ into this equation, we obtain

$$
\begin{aligned}
v^{2} & =\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(400 \mathrm{ft}) \tan 18^{\circ} \\
v & =64.7 \mathrm{ft} / \mathrm{s}
\end{aligned} \quad v=44.1 \mathrm{mi} / \mathrm{h}
$$

Example-5: During a hammer thrower's practice swings, the 7.1-kg head A of the hammer revolves at a constant speed v in a horizontal circle as shown. If $r=0.93 \mathrm{~m}$ and $u=60^{\circ}$, determine (a) the tension in wire $B C$, (b) the speed of the hammer's head

SOLUTION

First we note

$$
a_{A}=a_{n}=\frac{v_{A}^{2}}{\rho}
$$

(a) $\quad+\Sigma F_{y}=0: T_{B C} \sin 60^{\circ}-W_{A}=0$
or

$$
\begin{aligned}
T_{B C} & =\frac{7.1 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}}{\sin 60^{\circ}} \\
& =80.426 \mathrm{~N}
\end{aligned}
$$

$$
T_{B C}=80.4 \mathrm{~N}
$$

(b) $\quad+\Sigma F_{x}=m_{A} a_{A}: \quad T_{B C} \cos 60^{\circ}=m_{A} \frac{v_{A}^{2}}{\rho}$
or

$$
v_{A}^{2}=\frac{(80.426 \mathrm{~N}) \cos 60^{\circ} \times 0.93 \mathrm{~m}}{7.1 \mathrm{~kg}}
$$

or
$v_{A}=2.30 \mathrm{~m} / \mathrm{s}$

Example-6: The coefficients of friction between the load and the flat-bed trailer shown are $\mu=0.30$. Knowing that the speed of the rig is $72 \mathrm{~km} / \mathrm{h}$, determine the shortest distance in which the rig can be brought to a stop if the load is not to shift.

Deceleration of load is same as deceleration of trailer. which is the maximum allowable deceleration $a_{\max }$ -

$$
\begin{aligned}
+ \pm F_{y}=0: N-W & =0 \quad N=W \\
F_{m} & =\mu_{s} N=0.40 \mathrm{~W} \\
+\Sigma F_{x}=m a: \quad F_{m} & =m a_{\max } \\
0.40 W & =\frac{W}{g} a_{\max } \quad a_{\max }=3.924 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\mathbf{a}_{\max }=3.92 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow
$$

Uniformly accelerated motion.

$$
\begin{array}{rlr}
v^{2} & =v_{0}^{2}+2 a x \text { with } v=0 & v_{0}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s} \\
a & =-a_{\max }=3.924 \mathrm{~m} / \mathrm{s}^{2} & \\
0 & =(20)^{2}+2(-3.924) x & x=51.0 \mathrm{~m}
\end{array}
$$

